
Are Hardware Performance Counters a Cost Effective Way
for Integrity Checking of Programs?

Corey Malone
ECE Department

Polytechnic Institute of NYU
New York, NY

cmalon01@students.poly.edu

Mohamed Zahran
ECE Department

Polytechnic Institute of NYU
New York, NY

mzahran@acm.org

Ramesh Karri
ECE Department

Polytechnic Institute of NYU
New York, NY

rkarri@poly.edu

ABSTRACT

In this paper, we propose to use hardware performance coun-
ters (HPC) to detect malicious program modifications at load
time (static) and at runtime (dynamic). HPC have been
used for program characterization and testing, system testing
and performance evaluation, and as side channels. We pro-
pose to use HPCs for static and dynamic integrity checking
of programs.. The main advantage of HPC-based integrity
checking is that it is almost free in terms of hardware cost;
HPCs are built into almost all processors. The runtime per-
formance overhead is minimal because we use the operating
system for integrity checking, which is called anyway for pro-
cess scheduling and other interrupts. Our preliminary results
confirm that HPC very efficiently detect program modifica-
tions with very low cost.

Categories and Subject Descriptors

K.6.5 [MANAGEMENT OF COMPUTING AND IN-
FORMATION SYSTEMS]: Security and Protection

General Terms

Security

Keywords

hardware performance counters, integrity

1. INTRODUCTION
Programs can be maliciously modified either when the pro-

gram resides in storage (on disk for example) or at runtime.
To detect malicious modifications while the program is on
disk, many motherboards include a Trusted Platform Mod-
ule (TPM) [1] that checks for program integrity at load time.
The TPM does not check for program integrity at runtime.

Dynamic integrity checking of programs is needed to detect
runtime modifications [2]. Signature instruction stream is an
approach for runtime detection of control flow errors caused
by transient and intermittent faults [3]. A non-cryptographic
hash of the basic block is appended at its end at compile

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STC’11, October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

time, and this hash is then compared against the hash gen-
erated at runtime. Secure program execution framework [4]
uses a hash function along with a cryptographic transfor-
mation. CODESSEAL [5] is a joint compiler/hardware in-
frastructure for dynamic integrity checking of basic blocks.
The pre-computed hashes are stored in the memory of an
FPGA which is placed between the main memory and the
last level cache. Runtime Execution Monitoring (REM) [6]
modifies the processor microarchitecture, and the instruction
set architecture (ISA) to support dynamic integrity checking.
Dynamic integrity checking has a performance overhead as
it involves hash fetch from memory or disk, hash calculation,
and comparison with fetched hash. Moreover, these tech-
niques require modifications to the microarchitecture or the
instruction set architecture or both.

In this paper, We propose a novel application of hardware
performance counters (HPC) -which are built into almost all
mainstream processors for performance tuning purposes- for
static and dynamic integrity checking. HPCs have been in-
cluded in microprocessors from almost two decades. HPCs
have been used for performance evaluation of hardware sys-
tems [7], characterization of software applications [8], and
testing of software applications [9, 10]. Using side-effects,
like checksum calculation or performance counters, was dis-
cussed in [11, 12]. In [11] the authors propose remote authen-
tication system called ”Genuity” that verifies a system (the
hardware as well as the software that runs on it) by running
validity tests (sending an input) and a checksum (output) is
sent back over the network. The checksum takes into account
not only hashing locations in memory but also DTLB miss
performance counter. The paper [12] shows that the system
in [11] can be attacked, and argues that a software-only so-
lution to software authentication faces numerous challenges,
making success unlikely. However, in this paper we use per-
formance counters to build a model that is used to check the
integrity of the program dynamically. Our proposed scheme
is hard to attack using the scheme in [12] because we use rela-
tionship among performance counters not only raw numbers
from performance counters like in [11].

2. HPCS FOR INTEGRITY CHECKING
HPCs are a set of special-purpose registers built into pro-

cessors. HPCs store the counts of software and hardware re-
lated events. Examples of such events include cache misses,
instructions committed, and branch instructions committed.
Although a typical processor has the ability to measure a
large number of events, (for example, 133 events on the Ne-
halem architecture [13]) all of them cannot be monitored at

the same time; this is determined by the number of HPCs
supported. For example, since Ultra Sparc II has 2 HPCs
we can monitor 2 events at the same time and since AMD
Athlon has 4 HPCs [14], we can monitor 4 events at the same
time.

2.1 The Threat Model
Similar to other integrity checkers, we target attacks that

alter the instructions of a program before or during execu-
tion. This means that our threat model allows an attacker
to tamper with the disk and make modifications to the pro-
gram’s binary [16]. Modifying the program during execu-
tion [2] is another class of attacks that we target. Specific
instances of this class include buffer-overflow attack [17] and
return-to-libc attack [18].

2.2 HPC-based Integrity Checking
State-of-art static and dynamic integrity checkers compute

a cryptographic hash of the program periodically and com-
pare against a pre-computed hash of the original program. It
is impossible for an attacker to modify the program without
modifying the generated hash.

In HPC-based integrity checking, we monitor event counts
(using the built-in HPCs) and relationships between these
event counts for the program being checked. The attacker
does not know which events we monitor, which inputs we
use to count events, and which relationships we model and
monitor. We make three important assumptions before de-
scribing our static and dynamic integrity checking schemes.
Our first assumption is that the OS is trusted. Second, we as-
sume that the additional integrity information we store with
each program binary is encrypted and hashed; this ensures
that the attacker cannot alter this information when it is
loaded from the disk to memory and then to the processor.
Moreover, this step happens only once at the beginning of
the program execution. After that, this information is kept
in the OS address space and cannot be read or modified by
other programs. Finally, similar to most integrity checking
schemes, we check the integrity of programs and not the as-
sociated data.

2.2.1 Which HPCs to Monitor?

In the context of integrity checking, we shortlisted proces-
sor events to monitor as follows.
• They are independent of processor clock frequencies. Dif-

ferent processors have different clock frequencies and the
same processor can vary its clock frequency to reduce power.
So events that count cycles are not very revealing in terms
of program behavior. A program that runs when the clock
frequency is high may have cycle counts totally different
from the same program and same input executed on the
same processor with lower frequency.

• They are independent of performance enhancement struc-
tures, like TLBs, branch predictors, and caches as they
may not provide repeatable numbers. These event counts
may wary from one execution to next as there are a lot
of predictions (branch predictions, prefetches, etc). This
means the count of any event happening during fetch or
execution stages of instructions can vary among the same
program runs with the same input. Microarchitecture in-
dependent measures may characterize programs best [15].
So we avoid events based on these structures, including
hits and misses into TLBs and the caches.

• They track malicious program modifications. For example,
such modifications change either the number of instruc-
tions executed, their type, or both.

The shortlisted events include the total number of instruc-
tions retired, the number of branch instructions retired, cache
stores (they are better measures than loads because loads
can be speculative), completed I/O operations, and number
of floating point operations.

2.2.2 HPC-based Static Integrity Checking

The left part of Figure 1 shows the main workflow of the
static integrity checking scheme. Static integrity checking is
done in two steps.
• Step 1: Profiling at installation time– The trusted

OS executes the program on selected inputs without user
interaction and collects the HPC values of events at the end
of the execution. In the end, the OS has the final counts
of the selected events which are then stored encrypted and
hashed on the disk together with the program binary. The
attacker does not know when the profiling is done or what
are the inputs being used in profiling.

• Step 2: Profiling at check time– Anytime the user
(Here, we mean anybody who has legitimate control over
the machine, such as the owner, system administrator, or
legitimate user.) initiates the program execution, or just
needs to check the integrity of this program, the profiling
step is repeated by the OS using the same inputs it has
used in that first step, measuring the same events. The
OS then compares the values of the HPCs with the ones
stored from the initial profiling.

We do not expect the HPC values to be identical from one
run to the next, even if the program is not modified and the
same input is used. This is because program execution de-
pends on a number of factors. For example, programs are
loaded into different parts of memory, which is different with
each run. Also, some programs use random number gener-
ators in their functions, which can also be different among
runs. These factors, together with the noisy nature of HPCs
[19, 20] affect the HPC values. However, we found from our
experiments, that if the difference is within 5% the program
can be assumed safe.

 Dynamic

 Integrity Check Result

 All Samples of

Hardware Counter

 Values

Analytical Model

Profiling

Test Input

 Execution

 And

Model Evaluation

 Model

BuildingProfiling

Program

 Binary

Compare With

Previous Profile

 Static

 Integrity Check Result

 Final Hardware

 Counter Values

Figure 1: HPC-based Integrity Checking

2.2.3 HPC-based Dynamic Integrity Checking

Our hypothesis is that a program can be approximated as
mathematical relations between program event counts (such
as the number of instructions committed, the number of func-

tion calls, etc) to each other. Any program can be presented
as a control flow graph (CFG) where each node is an instruc-
tion and an arrow going from instruction A to instruction B
means that execution of B follows execution of A. Some in-
structions such as branches and function calls/returns break
this sequentiality. Executing a program means going on a
path through this CFG. For all legitimate paths in this CFG
(i.e. no malicious alterations to the program) the number of
instructions executed and their types are known.

1. Example: Suppose through all legitimate paths of the
CFG we encounter at most 6 branches. If at runtime we
count 8 committed branches, we can suspect something
malicious.

2. Example: If there is a loop, and each loop iteration con-
tains 3 branches, then at runtime the number of branches
after executing this loop (no matter how many iterations)
must be a multiple of 3.

By executing a program several times with different inputs,
we can get an approximation of these mathematical relation-
ship between program events measured by the HPCs.

The right part of Figure 1 shows the main workflow of
the proposed scheme. The scheme is divided into three main
steps: profiling, model building, and execution.

• Step 1: Profiling is done either at compile time, instal-
lation time, or at load time (if the program is small enough
not to increase load time substantially). It involves exe-
cuting the program with small an input set and gathering
event counts. This is very similar to the first step of our
static scheme and also under the OS control. The main
difference is that at this step the system gathers not only
the final values of the counters but reads the counters at
fixed intervals and stores all the readings till the end of
execution. Reading those HPCs at the end of the execu-
tion does not give an indication of the dynamic program
behavior.

• Step 2: Model building is done at the end of the profil-
ing phase using the periodic HPC values. We then unearth
relationships between the different events. The analytical
model can be of any sophistication. But for simplicity,
we have chosen to generate linear relationships. For this
we use Eurequa [21], a software tool for detecting equa-
tions and hidden mathematical relationships in data. We
tuned Eurequa to generate a linear relationship among
the HPCs we measured: INS (number of instructions re-
tired), BR (number of branches retired), WR (L1 data
cache writes), IO (complete I/O operations), FP (number
of floating point operations retired), and FN (return and
call instructions executed). We tried predicting INS as
a function of FN, WR, BR, IO, and FP. But the detec-
tion accuracy was not very high; some malicious program
modifications, such as modifying a single operation, may
produce very similar number of retired instructions as a
correct program. So we modeled, after several exploratory
experiments, two events: INS and WR, in terms of the
other events. The exact relationship is program depen-
dent.

• Step 3: Runtime checking– The trusted OS uses the
mathematical model to check for program integrity as fol-
lows. At load-time, the operating system (OS) reads the
analytical model and stores it in the OS address space. Pe-
riodically, during execution, the OS reads the HPCs, and
uses the model to calculate INS and WR event counts and
compares these predictions with the actual numbers read

from the HPC. We do not reset the counters every time the
integrity is checked. If the deviation is higher than some
threshold, the OS flags this program as possibly malicious.

The main advantage of our technique is that does not require
additional hardware or ISA modifications. It leverages the
HPCs built-in to almost all processors. So all that we need
is a profiling step and a small patch to the OS.

2.3 Usage scenarios of the techniques
The proposed HPC-based integrity checking techniques can

be used in many different ways.
• Scenario 1: Embedded systems with no integrity

checking support– In this case, the proposed technique
is the only integrity checking scheme. Low cost embed-
ded systems are widely deployed and the technique can be
easily added to these fielded systems without significant
costs.

• Scenario 2: High end systems with a static TPM
but no dynamic integrity checking – Most desktops
and laptops come with a TPM-based static integrity check-
ing. The proposed approach can be used to provide dy-
namic integrity checking.

• Scenario 3: High end systems with a static TPM
and dynamic integrity checking – Very few systems
fall into this category. In this case the proposed approach
can be used in tandem with the sophisticated integrity
checking techniques. The sophisticated and expensive tech-
niques may be disabled by default. They are enabled only
when the HPC-based techniques detect malicious program
modifications.

3. RESULTS AND ANALYSIS

3.1 Experimental Setup
Our experimental setup has three parts: The first one is to

read the HPCs. For this we used perf event tool which is now
part of the Linux kernel. We modified perf event to read the
HPCs of interest every 10,000 cycles and output the readings
to a file. The choice of 10,000 comes from the fact that it is
usually the time slice given by the OS to an application in
a round-robin scheduling. We set perf event such that the
HPCs reported are for our applications only and not the OS.
We have statically compiled our benchmarks to isolate any
side effects from dynamically linked libraries. The second
part has been explained in Section 2. The third part is to
use our analysis to detect possible malicious modifications to
the programs even if they use different inputs than the ones
used in the analysis phase.
• Benchmarks We use programs from the CTuning suite [22].

We have chosen a blend of different programs with different
characteristics and instruction mixes. For each program,
we profile the correct program using an input set different
than the one used at runtime. Then at runtime, we test
our model with the correct program but with a different
input set.

• Malicious modifications For each program, we insert
two types of malicious modifications. Malicious modifica-
tion 1 is an extra function call. This simulates such attacks
as buffer overflow and return-to-libc. Malicious modifica-
tion 2 is a operation modification (such as an addition
changed to subtraction). This simulates attacks that try
to bypass a security check (such as password check), denial
of service attacks, or attacks that make the system leaks

information. We have taken great care that the modifica-
tions do not cause the program to crash. Also the modifi-
cations are placed after careful consideration of each pro-
gram’s CFG to ensure the modification will be executed
no matter the input. In the tables, if digit 1, represent-
ing malicious modification 1, is appended to the program
name, it means an extra function has been added to the
program, while 2, representing malicious modifications 2,
means an operation has been modified.

We tested our technique with a wide range of modifications.
All the experiments were performed on Ubuntu with ker-
nel version 2.6.38 running on an Intel Quad-Core 2 Q9400
(Yorkfield).

3.2 Static Integrity Checking
Table 1 shows the static integrity checking results. The

table shows the percentage deviation of each HPC compared
to the correct program running on the same inputs. We used
two different inputs inp1 and inp2 in all the tables. Column
1 shows the benchmark used. For example, bzip2-1-inp1 rep-
resents the program bzip2 with an extra function added to
it (malicious modification 1) and executed using input inp1.
Subsequent columns present the percentage deviation of each
HPC from the values of the correct program running on inp1.

We have 4 benchmarks, with 2 types of malicious modifica-
tion, and 3 different inputs. This means we have 24 readings
for each program event. We compare each malicious program
with the corresponding benign program running on the same
input. A deviation of more than 5% means program modified.

We can see from the table that the IO count (i.e. bus
transactions) is the most sensitive to program modifications;
it has detected 19 out of the 24 different malicious modifica-
tions. This is because most programs have a high percentage
of I/O operations. And those operations require several bus
transactions. The total number of instructions (INS) is the
least sensitive. This is because of the 90/10 rule; most pro-
grams spends 90% of their times in 10% of the code. So if
the modification does not hit the 10% of the code it will not
have a big effect on the total number of instructions. Float-
ing point count (FP) is useful only when a program does
a lot of calculations; bzip2 as it has the largest number of
floating point operations in all the benchmarks shown. The
number of branch instructions (BR) is significant in detect-
ing modifications if the CFG of the program is complicated
with many decision points. This is very obvious in the first
three benchmarks. Which type of malicious modification has
the highest effect on the counters is program dependent. For
instance, bzip2 is more sensitive to adding extra functions,
while gsm is more sensitive to the operation modification.
This behavior is related to the complexity of the CFG of
each program. Bzip2 has less complicated CFG and hence
an extra function makes enough disturbance to the flow of
execution to be detected. But the more complicated CFG of
gsm means it has more decision points. So a modified op-
eration that affects the decision at some points of the CFG
can be easily detected. Depending on the input dijkstra can
be through complicated path in the CFG with a lot of deci-
sion points (like what happens with inp2); or it can go into a
straightforward path of sequential function calls which makes
it harder to detect. The sensitivity also depends on the po-
sition and type of the operation modification. With the 5%
threshold deviation, we can see from the table that we have
been able to detect all modifications. If any counter for an

application goes above the threshold, the program is flagged
as maliciously modified.

Finally, if we decrease our detection threshold from 5% we
will get a lot of false positives. If we increase this threshold,
some malicious modifications can go undetected.

Table 1: HPC-based static integrity checking: Devi-
ation from correct execution (naming convention of
leftmost column: benchmark-malicious modification
type-input

Benchmark INS BR FP FN IO WR

bzip2-1-inp1 26.37 22.38 35.98 31.57 2843.59 9.18
bzip2-1-inp2 0.87 2.46 11.95 11.37 248.03 8.73
bzip2-1-inp3 21.30 14.93 50.88 46.01 4588.91 0.40
bzip2-2-inp1 0.53 0.09 3.66 1.14 1.91 5.52
bzip2-2-inp2 2.47 2.38 1.03 2.72 4.25 5.76
bzip2-2-inp3 2.70 1.13 13.75 7.37 3.94 6.42

dijkst-1-inp1 3.70 3.62 1.80 1.26 66.91 15.18
dijkst-1-inp2 10.15 10.15 13.86 0.00 35.16 0.44
dijkst-1-inp3 0.64 0.64 2.86 0.64 58.93 3.61
dijkst-2-inp1 10.19 10.56 0.65 8.30 30.98 14.23
dijkst-2-inp2 58.00 59.79 33.86 61.70 66.89 62.79
dijkst-2-inp3 62.11 64.98 24.24 58.18 65.57 65.04

gsm-1-inp1 6.51 25.40 16.92 18.92 2194.55 35.75
gsm-1-inp2 1.83 2.20 3.70 2.10 37.02 1.02
gsm-1-inp3 4.93 0.57 4.21 2.59 601.46 10.21
gsm-2-inp1 14.75 17.40 8.20 10.22 0.94 3.20
gsm-2-inp2 13.75 10.04 1.36 0.69 16.44 12.09
gsm-2-inp3 15.73 12.82 9.45 10.21 4.72 2.89

lame-1-inp1 1.07 4.95 15.46 7.26 1245.90 3.85
lame-1-inp2 0.13 0.10 6.28 6.77 49.95 5.81
lame-1-inp3 0.09 2.40 17.68 3.61 91.05 0.33
lame-2-inp1 1.12 1.07 9.74 1.42 65.30 5.44
lame-2-inp2 1.02 0.85 6.87 6.75 40.37 0.60
lame-2-inp3 4.86 5.03 14.44 0.24 49.85 0.53

3.3 Dynamic Integrity Checking
Table 2 summarizes the results of the profiling and model

building phases for the benchmarks. The first column presents
the benchmark and the input set. The second column shows
the number of samples gathered during profiling. These sam-
ples are used to build the program model and hence are not
stored. The third column shows the two linear relationships
for INS and WR for each of the benchmarks. Any program
starts execution with a startup phase that does not represent
its real behavior [23]. For example, the startup phase of bzip2
is where the program loads the input file to be compressed.
The startup phase is program-dependent and is shown in the
fourth column. This information along with the models are
stored with program binary.

The last column shows the threshold deviation between
the value calculated, during real execution, at runtime and
the value measured by HPC. If the measured deviation is
above this threshold, the program has been modified. This
deviation depends on the mathematical model we choose and
the program. So it is also an experimental number. For
example, if the calculated INS is higher than the measured
one by more than 10% and WR measured is different from
the calculated one by more than 100% than the program is

Table 2: HPC Based Dyamic Integrity Checking:
Profiling Statistics and Model Building

Bench-inp Num Model Samples thresh.
samples to skip error (%)

bzip2-inp1 65535 INS=10BR 2500 INS: 10
-1288FN

WR=103FN WR: 100
+50IO

dijks-inp1 15387 INS=266FN 3000 INS: 25
-20WR

WR=BR WR: 20
+55IO

gsm-inp1 65536 INS=6BR 1500 INS: 25
-FP

WR=-10FN WR: 30
+150IO

lame-inp1 65536 INS=21BR 1500 INS: 30
-11270FP

WR=25FN WR: 10
-53IO

flagged. The main reason for the high threshold of WR for
bzip2 is that Eurequa was not able to find a very accurate
model. It is important to notice here that the mathematical
model does not generate the exact count, and it is not meant
to do so. It is meant to generate an approximation that is
within the threshold.

We executed several versions of the same application. Ta-
ble 3 shows the runtime results. The first two rows for each
benchmark are the correct application (non-modified) but
with different inputs. The following four rows contain mali-
cious modifications and are run on different inputs. Columns
2 and 3 show the deviation from the model generated at pro-
file time for the INS and WR HPCs.

Following is a summary of the results.
• The first row for each benchmark is a validation experi-

ment to check the mathematical model. We re-executed
the program, unmodified, with the same input (inp 1).
This shows that the correct program with the same input
will pass the test, as the deviation is less than the thresh-
old.

• Ideally, we would like to avoid false positives. The second
row for each benchmark is the case where the program was
executed, unmodified, with a different input (inp 2). Each
of the results came out as a false positive (i.e. we detect a
malicious modification when there is none).

• All modifications have been detected for both types of ma-
licious modifications except lame-2. From the twenty tests
presented in Table 3, the proposed technique detected the
malicious modifications in 16 cases and failed to detect 2
malicious modifications.

A detailed study of the applications, the profiling process
and the model building should further improve the accuracy
of this technique.

3.4 Overhead: Time and Storage
There is no hardware cost for our scheme because HPC

exist already in almost all processors. There is minimal over-
head for storage and time. For the static scheme, the system
only needs to store the last values of the counters at the
end of profiling. So with X counters, we need to store X

Table 3: HPC Based Dynamic Integrity Checking:
Runtime Checking
Bench INS Dev. WR dev. Detected?

(after startup)

bzip2-inp1 5.6% 68.2% no
bzip2-inp2 78.46% 27.48% False +ve
bzip2-1-inp1 59.66% 1750.84% yes
bzip2-1-inp2 0.56% 1164.30% yes
bzip2-2-inp1 4.23% 1736.40% yes
bzip2-2-inp2 0.25% 1164.30% yes

dijks-inp1 21.4% 19.26% no
dijks-inp2 99.01% 26.05% False +ve
dijks-1-inp1 41.85% 20.84 yes
dijks-1-inp2 116.66% 61.20% yes
dijks-2-inp1 25.36% 2.53% yes
dijks-2-inp2 99.02% 50.57% yes

gsm -inp1 24.73% 5.22% no
gsm -inp2 19.71% 29.15% no
gsm-1-inp1 58.14% 284.72% yes
gsm-1-inp2 19.84% 154.39% yes
gsm-2-inp1 67.10% 27.35% yes
gsm-2-inp2 32.39% 41.23% yes

lame-inp1 29.27% 0.35% no
lame-inp2 42.18% 23.64% False +ve
lame-1-inp1 35.10% 50.74% yes
lame-1-inp2 56.74% 52.86% yes
lame-2-inp1 7.02% 2.21% no
lame-2-inp2 42.73% 12.99% yes

values with the program binary. In the experiments con-
ducted in this paper we keep track of six counters each of
which is 8 bytes. So our overall storage is 54 bytes. There is
no performance overhead for the static scheme because the
whole scheme is offline. For the dynamic scheme the storage
requirement is also minimal. During profiling, the system
needs to keep all the samples (i.e. HPC values) measured
during the profiling. But these samples are kept only until
the system builds the mathematical model. After that the
samples can be deleted and only the model and the thresh-
olds, which don’t take more than 40 bytes, need to be stored
with the program binary. During execution, there is little
performance overhead (less than 10%) due to operating sys-
tem interrupts to read the counters and compare the read
values with the pre-computed model. Part of that overhead
is hidden because the operating system overhead takes place
anyway (for scheduling and other type of interrupts) whether
our scheme is there or not.

4. CONCLUSIONS
We showed how HPC can be effectively used for both static

and dynamic integrity checking. There are several outstand-
ing challenges that we are currently addressing:
• Dynamic integrity checking when several programs are run-

ning at the same time. In this case, the HPC will not
be able to keep track of the counts of the events for all
the programs. In fact, the HPC may measure cumulative
counts that do not represent any single program. There
are HPC monitoring tools, like the one we used in this
paper, that can monitor and gather measurements for a

targeted program. But in this case, the other programs
will not be checked. We plan to extend these tools to
save the measurements of a program when it is sleeping
(during process scheduling for example), reset the coun-
ters, and use the HPC for the current active program. In
this way, the HPC can then be used to monitor different
programs. When the programs are running at the same
time, we plan to explore HPC scheduling, where HPCs are
used to measure events for a program for sometime. Then
those measurements are saved, HPCs reset, and then used
to measure another program, and so on.

• The number of HPCs in a processor is much smaller than
the events that can be measured. This can impact the
accuracy of the scheme because the more events that can
be tracked the more accurate the model built. For static
integrity checking we can profile several times measuring
different events each time. For dynamic integrity checking,
we are exploring schemes where the OS and the tools can
change the events to be measured by HPCs dynamically
at runtime.

Our future research agenda includes a thorough analysis of
the program’s CFG to study how the position of the mod-
ifications in the program and the number of modifications
relate to the sensitivity of our technique. We also plan to in-
vestigate more microarchitecture-related counters. This will
be very beneficial to check the integrity of the system it-
self in addition to the program. Finally, we will expand our
research to include multithreaded applications.

Acknowledgments

This material is based on research sponsored by Air Force
Research Laboratory under agreement number FA8750-09-
1-0146. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. Also this work is
partially funded by GAANN fellowship.

5. REFERENCES
[1] R. Ng, “Trusted Platform Module - TPM Fundamental,”

http://www.asprg.net/aptiss2008/slides/TPM
Fundamentals-raymond ng.pdf, August 2008.

[2] S. Bratus, N. D’Cunha, E. Sparks, and S. W. Smith,
“TOCTOU, Traps, and Trusted Computing,” in Proc.
of the 1st International Conference on Trusted
Computing and Trust in Information Technologies:
Trusted Computing - Challenges and Applications, 2008.

[3] M. Schuette and J. Shen, “Processor Control Flow
Monitoring Using Signatured Instruction Streams,”
IEEE Transactions on Computers, vol. C-36, no. 3, pp.
264–276, March 1987.

[4] D. Kirovski, M. Drinić, and M. Potkonjak, “Enabling
Trusted Software Integrity,” in ASPLOS, vol. October.
New York, NY, USA: ACM, 2002, pp. 108–120.

[5] O. Gelbart, P. Ott, B. Narahari, R. Simha,
A. Choudhary, and J. Zambreno, “CODESSEAL:
Compiler/FPGA Approach to Secure Applications,” in
Proc. of the IEEE International Conference on
Intelligence and Security Informatics, May 2005, pp.
530–535.

[6] A. Fiskiran and R. Lee, “Runtime Execution Monitoring
(REM) to Detect and Prevent Malicious Code
Execution,” in Proc. of IEEE International Conference
on Computer Design, October 2004, pp. 452–457.

[7] J. Demme and S. Sethumadhavan, “Rapid identification
of architectural bottlenecks via precise event counting,”
in International Symposium on Computer Architecture
(ISCA), 2011.

[8] Y. Luo and K. W. Cameron, “Instruction-level
characterization of scientific computing applications
using hardware performance counters,” in Proceedings of
the Workload Characterization: Methodology and Case
Studies, 1998.

[9] L. Uhsadel, A. Georges, and I. Verbauwhede,
“Exploiting hardware performance counters,” in 5th
Workshop on Fault Diagnosis and Tolerance in
Cryptography, 2008.

[10] C. Yilmaz, “Using hardware performance counters for
fault localization,” in Proceedings of the 2010 Second
International Conference on Advances in System
Testing and Validation Lifecycle, 2010.

[11] R. Kennell and L. H. Jamieson, “Establishing the
genuinity of remote computer systems,” in Proceedings
of the 12th conference on USENIX Security Symposium
- Volume 12, 2003.

[12] U. Shankar, M. Chew, and J. D. Tygar, “Side effects
are not sufficient to authenticate software,” in
Proceedings of the 13th conference on USENIX Security
Symposium - Volume 13, 2004.

[13] “http://www.intel.com/products/processor/manuals/.”

[14]
“http://developer.amd.com/assets/intro to ca v3 final.pdf.”

[15] K. Hoste and L. Eeckhout, “Comparing benchmarks
using key microarchitecture-independent
characteristics,” in IISWC, 2006.

[16] A. Tereshkin, “Evil Maid Goes after PGP Whole Disk
Encryption,” International Conference on Security of
Information and Networks, 2010.

[17] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole,
“Buffer overflows: Attacks and Defenses for the
vulnerability of the decade,” in Foundations of Intrusion
Tolerant Systems, 2003 [Organically Assured and
Survivable Information Systems], February 2004, pp.
227 – 237.

[18] D. J. Day, Z. Zhao, and M. Ma, “Detecting
return-to-libc buffer overflow attacks using network
intrusion detection systems,” in Proceedings of the 2010
Fourth International Conference on Digital Society, ser.
ICDS ’10, 2010, pp. 172–177.

[19] V. Weaver and S. A. McKee, “Can hardware
performance counters be trusted?” in IISWC, 2008.

[20] M. Kuperberg and R. Reussner, “Analysing the fidelity
of measurements performed with hardware performance
counters,” in Proceeding of the second WOSP/SIPEW
international conference on Performance engineering,
2011.

[21] M. Schmidt and H. Lipson, “Distilling free-form
natural laws from experimental data,” Science, vol. 324,
no. 5923, pp. 81–85, 2009.

[22] “http://ctuning.org/.”

[23] T. Sherwood, S. Sair, and B. Calder, “Phase tracking
and prediction,” in Proceedings of the 30th annual
international symposium on Computer architecture
(ISCA), 2003, pp. 336–349.

