
Feasibility Study of Dynamic Trusted Platform Module

Arun K. Kanuparthi, Mohamed Zahran and Ramesh Karri
Polytechnic Institute of NYU

akanup01@students.poly.edu mzahran@acm.org rkarri@poly.edu

Abstract— A Trusted Platform Module (TPM) authenticates
general purpose computing platforms. This is done by taking
platform integrity measurement and comparing it with a pre-
computed value at boot-time. Existing TPM architectures do
not support run-time integrity checking of a program on the
platform. Attackers can modify the program after it has been
verified at the Time Of Check (TOC) and before its Time Of Use
(TOU). In this paper we study the feasibility of integrating a
dynamic on-chip TPM (DTPM) into the core processor pipeline
to protect against TOCTOU attacks. We explore the challenges
involved in designing DTPM and describe techniques to improve
its performance. The proposed DTPM has 2.5% area overhead
and 18% performance impact when compared to a single
processor core without DTPM.

I. INTRODUCTION

A trusted platform module (TPM) acts as a root of trust
for the platform that contains it, and can securely store
artifacts used to authenticate the platform. These artifacts
can include passwords, certificates, or encryption keys. A
TPM also stores platform integrity measurements to ensure
trustworthiness of the platform [1].

Current trusted platform architectures only provide load-
time guarantees. Integrity is measured just before the pro-
gram is loaded into memory1. However, an attacker can
introduce malicious code after the program is checked and
before it is used. This class of attacks is called TOCTOU
attacks [2].

We study the feasibility of using run-time integrity mea-
surements to counter the TOCTOU attacks. Section II
presents background on TPM, TOCTOU threat model, and
related work. Section III discusses the challenges involved
in designing DTPM, presents our approach to designing a
DTPM, and proposes techniques to optimize performance.
We describe the experimental setup to evaluate the proposed
approach and analyze the results in Section IV and conclude
in Section V with our ideas for future work.

II. BACKGROUND

A. TPM

A TPM is the root of trust for a computing platform. It
builds a chain of trust by measuring various parts of the
platform. The main functions of a TPM are to check for
platform integrity, data sealing and binding. To check for
integrity, it calculates a cryptographic hash of the platform
configuration using the built-in SHA-1 hash engine and
stores this integrity measurement in a protected storage called

1It is assumed that this program remains unchanged.

Platform Configuration Registers (PCRs). When TPM is
challenged to prove the authenticity of the platform or the
program running on the platform, it responds by reporting the
integrity measurement stored in the PCRs. The integrity is
checked by comparing the computed hash value and the value
reported by the PCR. TPM contains a 2048-bit RSA engine
for public key encryption, a random number generator, and
a built-in RSA key known as the Endorsement Key, that is
used to generate additional secret keys which can be used to
provide data sealing and binding.

B. The Threat Model

PCRs store the platform integrity measurement taken at
boot time. Based on this measurement, a user is forced
to trust this program at a subsequent time. However, a
malicious user might induce run-time vulnerabilities after
TOC and before TOU. Alternatively, an attacker may modify
instructions and data that were correct at TOC, before TOU.
These are two instances of TOCTOU threats [2]. Thus, there
is a need for run-time integrity checking.

C. Previous Work

Run-time integrity checking to detect control flow anoma-
lies involves computing a hash value (cryptographic or non-
cryptographic) of an instruction or a basic block at compile
time and comparing it with the hash value calculated at
run-time. An approach for run-time detection of control
flow errors caused by transient and intermittent faults was
proposed in [3]. A non-cryptographic hash is appended to
every basic block at compile time and this is then compared
against the hash generated at run-time to detect any control
flow errors. A joint compiler/hardware infrastructure for run-
time integrity checking, CODESSEAL, was proposed in [4].
At compile-time, CODESSEAL calculates the cryptographic
hash of a basic block and embeds this information into
the executable. The pre-computed hashes are stored in the
memory of an FPGA that is placed between the main
memory and the closest cache to the main memory. At run-
time, the integrity of each basic block is verified by the
FPGA. A related approach uses caches and hash trees to
verify the integrity of programs and data in the memory
[5]. Data are placed at the leaves of a tree in which every
node contains the hash of the nodes below it. This approach
performs run-time integrity checking by recursively verifying
the hash of the incoming basic block and all the hashes of
its parent nodes, up to the root hash.

Runtime Execution Monitoring (REM) [6] modifies the
micro-architecture and ISA to detect and prevent program
flow anomalies resulting from malicious code injection. It
verifies program code at the basic block level by pre-
computing keyed hashes during program installation and then
comparing these values against their hashes computed at
run-time. REM controls the processor pipeline and does not
commit the instructions in the basic block until integrity has
been checked. This run-time integrity checking is achieved
at the cost of modifying the ISA. In REM, the hashes are
stored on the L1 instruction cache. This results in contention
between the instructions and the hash values. None of the
hashes are stored on disk. As a result, there is a significant
storage overhead in the memory.

The central objective of the above mentioned work is to
provide run-time integrity checking to prevent control flow
errors. The approach proposed in this paper also has the
same objective, but differs in the way the hash storage is
handled, and also provides run-time integrity checking at
a different level of granularity (at the trace level, where
each trace consists of several basic blocks). A hash storage
hierarchy is proposed to store the pre-computed hashes. The
proposed approach does not involve making modifications to
the ISA.

III. CHALLENGES IN DESIGNING A DTPM
A. Motivational Example

Consider 403.gcc, a SPEC CPU2006 benchmark. When
403.gcc is run on a reference input 166.s, it executes
82 × 109instructions. Run-time integrity checking of each
of the instructions entails calculating a hash value for each
instruction and comparing it with a pre-computed value.
Using a cryptographic hash function, SHA-1 in this paper, on
each instruction takes 80 cycles to generate a 20-byte output
for each instruction [7]. Consequently, calculating a hash for
every instruction degrades performance, and has large storage
of 1.64 trillion bytes2. Hence, checking for integrity at the
instruction level is not practical.

Let us consider run-time integrity checking at the basic
block level. A basic block is a sequence of instructions with
one entry point and one exit point [3]. When we perform
run-time integrity checking at the basic block level on the
403.gcc example, 51224 basic blocks are executed. We
will now require 8004 KB to store these hashes. This is still
too large to be stored on the chip. Therefore, we need to store
some of the hashes in the disk (encrypted using the platform
RSA keys). When we perform run-time integrity checking
at the basic block level, it takes 102.1 × 109 cycles while
executing 500 million instructions. This is because multiple
disk accesses are required to fetch the hashes and also hash
calculations for the basic blocks consume extra cycles. Fig.
1 shows that including the DTPM increases the number of
execution cycles, by 250× on average for all the benchmarks
[8].

2An average instruction is four bytes in size, which is much smaller than
512-bits. Thus, we pad the instruction to produce the 64-byte input. This
underutilizes the SHA-1 hash function.

Fig. 1. Impact of including the DTPM on the execution cycles

If we perform run-time integrity checking at the function
level, we need to hash all the functions in the application.
The 403.gcc benchmark has 3890 functions. If we check
the integrity of every function, we will need to generate and
store 3890 hashes, which is about 78 KB. This is a significant
improvement. The number of cycles required to generate the
hash value is proportional to the size of the input, which in
this case, is the size of instructions in a function. Hashing
functions with a large number of instructions in it will take
a large number of cycles. So, we must stall the pipeline until
all the instructions in the function are in the pipeline. This
will impact the performance. Since checking for integrity at
the instruction level, basic block level and function level are
impractical, we propose to check at the trace level.

B. Integrity checking of Dynamic Instruction Traces

At run-time, a program takes different paths depending
on the input applied. It follows a particular sequence of
basic blocks depending on the control instructions that are
encountered. When a control instruction is encountered, it
starts executing a different basic block. This logical sequence
of basic blocks is called a trace [9]. A control flow graph
is a graphical representation of all the different traces that
can be traversed during program execution. Fig. 2 shows
an example Control Flow Graph (CFG) for a function with
each basic block acting as a node. After the last instruction in
each basic block, there is a control instruction (conditional or
unconditional branch, a jump, or return) which transfers the
control to another basic block. There are six possible traces
in the CFG shown in Fig. 2: BB0→ BB1→ BB4→ BB5,
BB0 → BB1 → BB3, BB0 → BB1 → BB3 → BB5, BB0 →
BB2, BB0→ BB2→ BB3 and BB0→ BB2→ BB3→ BB5.

The starting address of the trace is the starting address of
its first basic block. Each trace has a trace ID. The trace ID
is the starting address of trace followed by a series of 1s and
0s indicating branch taken or not taken. The trace ends with
a return instruction or when it reaches a pre-defined length
in terms of number of basic blocks. If an attacker modifies
the instructions without changing the trace ID, it will still
result in a different hash value.

One parameter that needs to be considered is the number
of basic blocks in a trace. In one extreme, each basic block

Fig. 2. Example CFG of a function

can be a trace. The obvious advantage is that this results
in fewer pipeline stalls. But, this will result in a large
number of hashes. On the other extreme, if each trace is
composed of a large number of basic blocks, the number of
hashes is reduced. However, it will increase the number of
pipeline stalls. From the profiling information obtained for
the benchmarks, the average basic-block size is 16 bytes.
We propose that each trace is composed of up to four basic
blocks. Since the input to the SHA-1 hash function will be
64 bytes, this results in efficient usage of the SHA-1 hash
function as it does not involve zero padding the input. Trace
size can similarly be tuned for other hash functions. This
results in a small number of hashes and fewer pipeline stalls.
Thus, we propose run-time integrity checking at the trace
level, with each trace consisting of at most four basic blocks.

To reduce the number of traces that need to be checked,
we leverage the observation that a processor spends 90%
of the time executing 10% of the program code [10]. This
is called the 90-10 rule. By generating hashes for the most
frequent traces, we reduce the hash storage overhead. When
this rule is applied to the 403.gcc benchmark, we need
only 1636 hashes at the trace level when compared to 51224
and 82 billion hashes at the basic block and instruction
levels respectively. The first five columns of Table I show
the reduction in the number of hashes and the size of all the
hashes.

The 90-10 rule is just one approach to reduce the total
number of hashes. If security is more important than perfor-
mance, then security-critical functions, traces, or basic blocks
may be checked for integrity instead.

C. Micro-architecture Support for Run-time Integrity Check-
ing of Traces

There are several important design considerations here.
First, where should the DTPM be placed in the core pipeline?
Second, how does the DTPM know that the address currently
being fetched is the start of a trace? And finally, if the DTPM
finds that a trace is modified, when does it abort execution?

To address the first issue, since we compute hashes only
for selected traces, we need to monitor the starting address
of the trace. Thus, having the DTPM near the fetch stage

of the pipeline is a good solution. Fig. 3 shows the DTPM
integrated into the basic processor pipeline. The dotted
line shows the chip boundary. The shaded region in the
DTPM is the DTPM internal storage. The DTPM gets the
program counter from the fetch stage, the branch directions
from the branch predictor and the instructions from the L1
instruction cache. These are shown by arrows (a), (b) and (c)
respectively in Fig. 3. These are used to identify the trace.
Hashes that are stored outside the DTPM are fetched when
the hash is not found in the DTPM.

The starting address of a trace can be conveyed to the
processor by storing the start addresses of the traces in the
DTPM internal storage, indexed by the trace ID. This is our
solution to the second problem.

As far as aborting execution, we tag each instruction with
a bit as it progresses through the pipeline. This bit indicates
whether the instruction has been successfully verified by the
DTPM. If this bit is set, it means that the DTPM is still
checking the instruction and hence the instruction cannot be
committed. DTPM controls the commit stage of the pipeline.
This is shown by arrow (d) in Fig. 3. If the bit is clear, it
means that the trace has been successfully checked and hence
can be committed. If the run-time integrity checking fails, it
interrupts the processor for further action. If the DTPM does
not detect the start of a trace, it means that the current trace
is not used frequently and the fetched instructions commit
without any DTPM intervention.

Some of the delay incurred in the process of fetching
pre-computed hashes, calculating hash for the current trace,
and comparing them, is masked by the time taken by the
pipeline to execute the instructions in the trace. Overall
system performance is affected only when the instructions
reach the commit stage and DTPM has not yet checked their
integrity. This occurs mainly because of disk accesses to
fetch the pre-computed hashes.

We propose to reduce the disk accesses by introducing a
hash storage hierarchy. One solution is to store the hashes in
the on-chip cache as in [6]. But this will result in contention
for accessing the cache along with the instructions and data.
Therefore, we propose to use a dedicated Hash Trace Cache
(HTC) to store the hashes. HTC was inspired by trace caches
[9]. The main goal of HTC is to cache the hashes fetched
from the disk, so that the DTPM will not need to access
the disk very often. If DTPM does not find the hash in
its internal storage, it will look for it in the HTC. HTC is
accessed using the trace ID, and if there is a hit, it returns
the hash of that trace. We assume that the chip is protected
from physical attacks and the hashes stored on-chip cannot
be tampered with, but anything off-chip can be modified by
an adversary. Thus, the DTPM does not compute the hash
of the current trace if the hash of this trace is found in the
HTC. It marks the trace as safe. But, if there is a miss in
the HTC, the lower levels in the hash storage hierarchy are
searched for and the DTPM calculates the hash for this trace.
The pre-computed hash found in the lower level is fetched
to the higher level of hash storage hierarchy, i.e., the HTC,
decrypted using the platform RSA keys. If the calculated and

No. of Hashes Size of Hashes HTC accesses main memory disk accesses
w/o 90-10 rule w/ 90-10 rule w/o 90-10 rule w/ 90-10 rule accesses

400.perlbench 20149 707 3149 14 23498952 72393 667
401.bzip2 2508 198 392 4 6790463 67345 156
403.gcc 51224 1636 8004 32 60112547 374219 2487

462.libquantum 1648 151 258 3 5260921 161078 114
483.xalancbmk 24165 826 3776 17 28011925 47772 765

003.clustalw 2554 146 400 3 5683924 330177 108
006.phylip 1745 122 273 3 4883263 17249 79

stream 1248 42 195 1 36621247 165482 8

TABLE I
COMPARISON OF NUMBER AND SIZE (IN KB) OF HASHES, AND NUMBER OF HTC ACCESSES, MAIN MEMORY ACCESSES AND DISK ACCESES

Decode

Allocate

Execute

Fetch

Commit

Hash Trace

Cache (HTC)
DTPM

L1 Instruction

 Cache
TLB

Branch

Pred.

Stall / Commit

 Disk

Main

 Memory

On-chipOff-chip

(a)
(b)

(c)

(d)

(e)

Stage Buffer

Fig. 3. Processor Pipeline with DTPM and the proposed memory hierarchy

the pre-computed hash values match, the instructions in the
trace are committed. If a hash value stored in the HTC has
to be replaced, it is encrypted using the platform RSA keys
and stored in the lower level of hash storage hierarchy.

Based on the sensitivity study on the size of the HTC
[8], we choose a 32 KB direct mapped HTC. The resulting
improvement in performance is in Fig. 4. The average
number of execution cycles for all the benchmarks with
DTPM and HTC incorporated into the processor pipeline
is 1.35 times the number of execution cycles on the basic
pipeline. When the HTC is introduced, the number of disk
accesses is reduced. The benchmark 403.gcc accesses the
HTC 6 × 107 times and accesses the lower level in the hash
storage hierarchy that is outside the chip boundary 3.7 ×
105 times. Without the HTC, there would have been 6 × 107

disk accesses. The sixth column of Table I gives the number
of HTC accesses. Although the HTC reduces performance
impact, its miss penalty is very high. The high miss penalty
of the HTC is mainly due to the huge difference in access
latency between the on-chip HTC and the off-chip disk.

D. Additional Performance Optimizations

Ideally, run-time integrity checking should not affect the
overall performance. There is performance improvement

when the HTC is included in the hash storage hierarchy when
compared to the case when there is no HTC. But, the HTC
has a high miss penalty. The latency introduced by the hash
computation also affects the performance. Performance can
further be improved if these two issues are taken care of. We
propose the following additional performance optimizations.

1) Extending Hash Storage Hierarchy to Reduce the Miss
penalty of the HTC: We propose to extend the hash storage
hierarchy by using a part of the system DRAM or main
memory to store the hashes. We use part of the address space
of the system memory as an additional level in the memory
hierarchy of hash value storage (shown by the shaded portion
in the main memory in Fig. 3). On a HTC miss, the system
memory will be interrogated before the disk is accessed.
There are two issues that we must deal with. The first is
where to store the hash values in memory. The second is
how to access these hash values given a trace ID.

We propose to store the hashes in the system memory
as part of the operating system address space. This is more
secure because this address space cannot be accessed by the
user application. However, we propose to store the hashes in
encrypted form. This is because being off-chip makes them
vulnerable to a TOCTOU attack.

To address the second issue, we implement a scheme
similar to virtual memory management, wherein a page table
is stored in memory and used to make the translations from
virtual to physical pages on a TLB miss. We store a table
of hashes starting with a fixed start address. This table
is accessed using the trace ID. The trace ID modulo the
number of entries in the table is used to get the entry in
the table where the encrypted hash of the trace is stored.
When the encrypted hash is fetched from the main memory
(or from the disk on a miss in the table), it is brought into
the DTPM, decrypted and compared against the hash of the
trace computed at run-time by the DTPM. The hash storage
hierarchy is shown by the region indicated by (e) in Fig. 3.
The shaded regions in the main memory and the disk indicate
the small portion allocated for storing the hash values. The
last three columns of Table I give the number of accesses in
the HTC, main memory and the disk respectively.

2) Speeding up the Hash Computation: Part of the overall
latency of DTPM is to calculate the SHA-1 hash for a trace.
So we expect a performance improvement if we speedup this
hash calculation, using a faster hash function3. However, as
we will see in the results section, this was true for some of
the benchmarks. This is because, in case of an HTC hit, we
do not recalculate the hash value for that trace. Therefore,
speeding up hash calculation will not improve performance
whenever there is an HTC hit. Speeding up hash calculation
will improve overall performance when there is no HTC or
when there are a lot of HTC misses.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

A wide range of benchmarks from suites such as SPEC
CPU2006, BioBench [11] and STREAM [12], have been
chosen to represent different program behaviors (processing-
bound and memory-bound). These benchmarks were com-
piled using the GNU version of GCC at O3 optimization
level. For all the benchmarks, we run a representative 500M
instructions. To obtain the basic block information, we profile
the benchmarks with the training inputs, using exp-bbv, a
basic block vector generation tool from Valgrind [13]. We
used Zesto [14], a cycle-accurate out-of-order superscalar
processor simulator that simulates x86 binaries. We config-
ured the simulator to have the specifications of a single Intel
Nehalem core [14]. We choose a 4 GHz processor frequency
for our experiments. We assume that (i) the comparison of the
hash values take 2 cycles (ii) finding the hash in the DTPM
storage takes 1 cycle (iii) HTC is 32 KB in size, with an
access time of 1 ns [15], which translates to 4 cycles (iv) the
memory access takes 50 ns, which translates to 200 cycles
(v) encrypting and decrypting the hashes takes 150 cycles
(vi) and each disk access takes 2.6 × 106 cycles [8].

B. Results and Analysis

The average number of execution cycles when there is
no DTPM is 7.86 × 108. However, when the DTPM is

3Some of the SHA-3 round 2 candidates can compute a hash in only ten
clock cycles.

Fig. 4. Impact of different optimizations on the execution cycles

Fig. 5. Impact on Instructions Per Cycle (IPC) of the various optimizations

incorporated, there is a 250 × increase in the execution
cycles. When the HTC is added to the hash storage hierarchy,
the total execution cycles is now approximately 35% more
than the execution cycles on a basic processor pipeline.
When the main memory is included in the hierarchy, this
is further reduced to approximately 18%. This performance
improvement is shown in Fig. 4.

The average number of instructions per cycle (IPC) of the
baseline processor is 1.211. The average IPC goes down to
0.865 when the 32 KB HTC is in the hash storage hierarchy.
When main memory is added to this hierarchy, the IPC is
1.178 and is approaching the baseline IPC as seen in Fig.5.

The effect of speeding up the hash function on the overall
performance is summarized in Fig. 6. As we mentioned

Fig. 6. Impact of different hash functions on the execution cycles

earlier, it depends on HTC performance in terms of hits
and misses. 403.gcc has the highest HTC misses, as seen
from the second last column of Table I. So speeding up
hash computation by 8× improves performance by 4.18%.
006.phylip has the lowest HTC misses and also has
the lowest improvement in performance due to speeding up
the hash computation (0.24%). In general, the performance
improvement when the hash computation is speeded up is
not high. This is due to the high number of HTC hits, as
shown in Table I. If HTC was not present, then the system
performance would have been sensitive to hash calculation
speed.

C. Comparison with related work

REM does not implement a hash storage hierarchy. The
pre-computed hashes are not stored in the disk, and hence the
memory requirement is expected to be high. Since the new
instruction is inserted at the beginning of every basic block
in the code, REM sees an 86.6% increase in the code-size for
a few SPEC CPU2000 benchmarks. Our approach does not
change the ISA, and does not modify the code. REM uses
a small hash read buffer to store the pre-computed hashes.
If the hash value goes out of the buffer, it has to be fetched
again from the memory. This can degrade performance if
SPEC CPU2006 benchmarks, which have several billions of
instructions, are used. The 32KB HTC proposed in this paper
can hold 1K hash values in comparison to REM’s hash buffer.

D. Hardware Cost and Power Analysis

In this paper, we proposed an on-chip DTPM and HTC
with some hashes stored in the main memory. A direct-
mapped 32 KB HTC has an area of 0.2891 mm2. The area
of the RSA-2048 engine and the SHA-1 engine together is
0.26 mm2 when implemented using 45 nm FreePDK cells.
Nehalem processor core area is 24.4 mm2 and hence, the area
overhead is 2.5%. The total read dynamic power at maximum
frequency is 0.0968 W. The total standby leakage power is
0.0257 W [15].

V. CONCLUSION

In this paper we studied the feasibility of an on-chip
dynamic TPM for a single core processor. We discussed
the main challenges of DTPM: high impact on performance
and generation and storage of hash values. In order to make
DTPM feasible, we introduced a hash value storage hierarchy
that includes a Hash Trace Cache and a part of the main
memory, beside the disk. We showed that a DTPM can
indeed be implemented with 18% performance overhead and
just 2.5% area overhead. We are currently investigating ad-
ditional means to reduce the impact on performance further.

VI. ACKNOWLEDGMENTS

This material is based on research sponsored by Air Force
Research Laboratory under agreement number FA8750-09-
1-0146. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstand-
ing any copyright notation thereon.

VII. DISCLAIMER

The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of Air Force Research Laboratory or
the U.S. Government.

REFERENCES

[1] TCG, “Trusted Platform Module (TPM) Sum-
mary,” http://www.trustedcomputinggroup.org/resources/
trusted platform module tpm summary, April 2008.

[2] S. Bratus, N. D’Cunha, E. Sparks, and S. W. Smith, “TOCTOU, Traps,
and Trusted Computing,” in Proc. of the 1st International Conference
on Trusted Computing and Trust in Information Technologies: Trusted
Computing - Challenges and Applications, March 2008, pp. 14–32.

[3] M. Schuette and J. Shen, “Processor Control Flow Monitoring Using
Signatured Instruction Streams,” IEEE Transactions on Computers,
vol. C-36, pp. 264–276, March 1987.

[4] O. Gelbart, P. Ott, B. Narahari, R. Simha, A. Choudhary, and
J. Zambreno, “CODESSEAL: Compiler/FPGA Approach to Secure
Applications,” in Proc. of the IEEE International Conference on
Intelligence and Security Informatics, May 2005, pp. 530–535.

[5] B. Gassend, G. Suh, D. Clarke, M. van Dijk, and S. Devadas, “Caches
and Hash Trees for Efficient Memory Integrity Verification,” in Proc.
of The Ninth International Symposium on High-Performance Computer
Architecture, February 2003, pp. 295–306.

[6] A. Fiskiran and R. Lee, “Runtime Execution Monitoring (REM) to
Detect and Prevent Malicious Code Execution,” in Proc. of IEEE
International Conference on Computer Design, October 2004, pp.
452–457.

[7] Y. Ming-yan, Z. Tong, W. Jin-xiang, and Y. Yi-zheng, “An efficient
ASIC implementation of SHA-1 engine for TPM,” in Proc. of The
IEEE Asia-Pacific Conference on Circuits and Systems, vol. 2, De-
cember 2004, pp. 873–876.

[8] A. Kanuparthi, M. Zahran, and R. Karri, “Architecture
Support For Dynamic Trust Measurement,” http://cid-
7880c71b9c4ca6e7.skydrive.live.com/browse.aspx/Public, Polytechnic
Institute of NYU, Brooklyn, NY, Tech. Rep., April 2010.

[9] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace Pro-
cessors,” in Proc. 30th Annual Symposium on Microarchitecture,
December 1997, pp. 138–148.

[10] J. L. Hennessey and D. A. Patterson, Computer Architecture - A
Quantitative Approach. San Francisco, California: Morgan Kauffman
Publishers, 2007.

[11] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C.-W.
Tseng, and D. Yeung, “BioBench: A Benchmark Suite of Bioinfor-
matics Applications,” in Proc. of IEEE International Symposium on
Performance Analysis of Systems and Software, March 2005, pp. 2–9.

[12] J. D. McCalpin, “Stream: Sustainable memory bandwidth in high per-
formance computers,” http://www.cs.virginia.edu/stream/, University
of Virginia, Charlottesville, Virginia, Tech. Rep., 1991-2007.

[13] Valgrind, “Valgrind exp-bbv - Basic Block Vector generation tool,”
http://valgrind.org/docs/manual/bbv-manual.html, .

[14] G. H. Loh, S. Subramaniam, and Y. Xie, “Zesto: A Cycle-Level
Simulator for Highly Detailed Microarchitecture Exploration,” in Proc.
of the International Symposium on Performance Analysis of Systems
and Software, April 2009, pp. 53–64.

[15] HP, “HP Interactive CACTI,” http://www.hpl.hp.com/research/cacti, .

